
Introduction to 
Reinforcement Learning (RL)

Vikky Masih,

Research Scholar,

Mehta Family School of Data Science & Artificial Intelligence, 

IIT Guwahati

1
11-12 July 2023, DS&AI Research Scholars' Discussion Group, IITG

https://v.masih.page/
https://rhythmgrover.github.io/scholarsmeet.html


Machine Learning (ML)

• Unsupervised Learning:
• Clustering, Anomaly Detection, 

PCA, etc.
• Find patterns in input data

• Supervised Learning:
• Classification and Regression
• Labelled data for training

• Reinforcement Learning:
• Decision making under uncertainty
• Learn to improve performance via 

interacting with environment

• ML is fundamental concept of AI
• Learn to improve performance via 

experience

Image Credits: mathworks.com
2



3
Ref: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained



Machine Learning (ML)

• Unsupervised Learning:
• Clustering, Anomaly Detection, 

PCA, etc.
• Find patterns in input data

• Unsupervised learning example:
• Goal: Clustering, Outlier detection
• Data: 𝑥𝑖 , … , 𝑥𝑛

Image Credits: wikipedia.org
4



Machine Learning (ML)

• Supervised Learning:
• Classification and Regression

• Labelled data for training

• Regression:
• Goal: 𝑓 Ԧ𝑥 = Ԧ𝑦,

• Data: 𝑥𝑖 , 𝑦𝑖 , … , 𝑥𝑛, 𝑦𝑛

• Classification:
• Goal: argmax 𝑃 𝑐𝑙𝑎𝑠𝑠 Ԧ𝑥 = C

• Data: 𝑥𝑖 , 𝐶𝑖 , … , 𝑥𝑛, 𝐶𝑛

Image Credits: javatpoint.com
5



Machine Learning (ML)

• Reinforcement Learning:
• Stochastic optimal control

• Learn to improve performance via 
interacting with the environment

• RL example:
• Goal: 

• Maximize cumulative reward

Maximize σ𝑖=1
∞ 𝑅𝑒𝑤𝑎𝑟𝑑(𝑆𝑡𝑎𝑡𝑒𝑖 , 𝐴𝑐𝑡𝑖)

• Data:

𝑅𝑒𝑤𝑎𝑟𝑑𝑖+1, 𝑆𝑡𝑎𝑡𝑒𝑖+1 = 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡 𝑆𝑡𝑎𝑡𝑒𝑖 , 𝐴𝑐𝑡𝑖𝑜𝑛𝑖

Image Credits: wikipedia.org
6



TD-Gammon – Tesauro ~1995

• Net with 80 hidden units, 
initialize to random weights

• Select move based on network 
estimate & shallow search

• Learn by playing against itself

• 1.5 million games of training
• competitive with world class 

players

P(win)

State: Board State
Actions: Valid Moves
Reward: Win or Lose

Slide Credits: Geoff Hulten
7



Atari 2600 games

Same model/parameters for 
~50 games

State: Raw Pixels
Actions: Valid Moves
Reward: Game Score

Slide Credits: Geoff Hulten
8



Robotics and 
Locomotion

2017 paper https://arxiv.org/pdf/1707.02286.pdf

https://youtu.be/hx_bgoTF7bs

State: 
Joint States/Velocities
Accelerometer/Gyroscope
Terrain

Actions: Apply Torque to Joints
Reward: Velocity – { stuff }

Slide Credits: Geoff Hulten
9



Alpha Go

• Learning how to beat humans at ‘hard’ games 
(search space too big)

• Far surpasses (Human) Supervised learning 

• Algorithm learned to outplay humans at chess in 
24 hours

State: Board State
Actions: Valid Moves
Reward: Win or Lose

https://deepmind.com/documents/119/agz_unformatted_nature.pdfSlide Credits: Geoff Hulten
10



Slide Credits: Katerina Fragkiadaki
11



Reinforcement Learning

• RL problems are generally posed as Markov Decision Process (MDP)
• RL is used for MDPs where the transition prob. or reward prob. are unknown.

• MDP: Discrete-Time Stochastic Control Process
• Markovian Property: 

• Next reward and state does not depend on history. 
• Next reward and state depend only on current state and action.

• It’s a 4-tuple 𝑆, 𝐴𝑠, 𝑃𝑎 𝑠, 𝑠′ , 𝑅𝑎 𝑠, 𝑠′

• 𝑆→ State Space → Set of states
• 𝐴𝑠→ Action Space available at state s→ Set of possible actions
• 𝑃𝑎 𝑠, 𝑠′ = ℙ(𝑠′|𝑠, 𝑎)→ Probability of transitioning from s to s′ after taking action a
• 𝑅𝑎 𝑠, 𝑠′ = 𝔼(𝑟′|𝑠, 𝑎)→ Expected Reward obtained after transitioning from s to s′ after 

taking action a

12



Example MDP

• 3 states (green circles) 
• 𝑆0, 𝑆1, 𝑆2

• 2 actions (orange circles)
• {𝑎0, 𝑎1}

• 2 rewards (orange arrows)
• 𝑅𝑎1 𝑆2, 𝑆0 = −1

• 𝑅𝑎0 𝑆1, 𝑆0 = +5

• Example transition probabilities:
• 𝑃𝑎0 𝑆0, 𝑆2 = 0.5

• 𝑃𝑎0 𝑆0, 𝑆0 = 0.5

13
Image Credits: wikipedia.org



Reinforcement Learning

• Policy (𝜋): Mapping from state to action
• Deterministic: 𝑎𝑡 = 𝜋 𝑠𝑡 , or,

• Stochastic: 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝜋(𝑎|𝑠𝑡)

• Objective of RL:
• Find a policy that maximizes long term cumulative reward.

• maximize σ𝑡=0
𝑇 𝛾𝑡𝑅𝑎𝑡(𝑠𝑡 , 𝑠𝑡+1), where, 𝛾 ∈ [0,1] (Discount factor)

• How to make a decision?
• Rank State or (State, Action) based on some value derived from experience

• Value functions measure the goodness of a particular state or state/action 
pair for a given Policy

14



Robot in a room

• States:
• Location ∈ { 1,1 ,… , 3,4 }

• Actions: 
• UP, DOWN, LEFT, RIGHT

• Terminate at (1,4) or (2,4)

• Note:
• Transitions and rewards are 

deterministic.

15

Robot +1

-1

Slide based on works of Peter Bodík, RAD Lab, UC Berkeley

• Reward +1 at (1,4), -1 at (2,4)

• Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):
• 𝑉(𝑠) = max

𝑎
𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1

16

? ? ? +1

? ? -1

? ? ? ?

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠
• Maximum expected reward 

accumulated when starting from a 
given state

• Bellman equation (Optimal):
• 𝑉(𝑠) = max

𝑎
𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Value Iteration
• Initializing

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

17

0 0 0 +1

0 0 -1

0 0 0 0

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• First Iteration

18

-0.1 -0.1 0.9 +1

-0.1 -0.1 -1

-0.1 -0.1 -0.1 -0.1

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• Second Iteration

19

-0.1 0.8 0.9 +1

-0.1 0.8 -1

-0.1 -0.1 -0.1 -0.1

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• Third Iteration

20

0.7 0.8 0.9 +1

-0.1 0.8 -1

-0.1 -0.1 0.7 -0.1

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1 𝑠 = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• Fourth Iteration

21

0.7 0.8 0.9 +1

0.6 0.8 -1

-0.1 0.6 0.7 0.6

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• Fifth Iteration

22

0.7 0.8 0.9 +1

0.6 0.8 -1

0.5 0.6 0.7 0.6

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):

• 𝑉(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠′ = 𝑠𝑡+1

• Using Bellman equation iteratively

• 𝑉𝑘+1(𝑠) = max
𝑎

𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉𝑘 𝑠′

• Converged

23

0.7 0.8 0.9 +1

0.6 0.8 -1

0.5 0.6 0.7 0.6

Reward -0.1 for each step



Robot in a room: State Value Function

• State Value Function:
• 𝑉 𝑠

• Maximum expected reward 
accumulated when starting from a 
given state

• Bellman equation (Optimal):
• 𝑉(𝑠) = max

𝑎
𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾𝑉 𝑠′

• 𝛾 = 1, 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1

• Policy: 
• 𝜋 𝑠 = argmax

𝑎
σ𝑃𝑎(𝑠, 𝑠

′)𝑉(𝑠′)

24

0.7 0.8 0.9 +1

0.6 0.8 -1

0.5 0.6 0.7 0.6

Reward -0.1 for each step



Robot in a room:

What if the robot is not 
functioning properly? 

• State transitions are stochastic
• An action may not lead to 

intended state

• Rewards/Costs are stochastic

25Reward -0.1 for each step

? ? ? +1

? ? -1

? ? ? ?



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)

• Maximum expected reward 
accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

26

→ ?

↓ ?

← ?

→ ?

← ?

→ ?

↓ ?

+1

↑ ?

↓ ?

↑ ?

→ ?

↓ ?

-1

↑ ?

→ ?

← ?

→ ?

↑ ?

← ?

→ ?

↑ ?

← ?

Reward -0.1 for each step



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)
• Maximum expected reward 

accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

• Value Iteration: Initialization

27

→ 0

↓ 0

← 0

→ 0

← 0

→ 0

↓ 0

+1

↑ 0

↓ 0

↑ 0

→ 0

↓ 0

-1

↑ 0

→ 0

← 0

→ 0

↑ 0

← 0

→ 0

↑ 0

← 0

Reward -0.1 for each step



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)
• Maximum expected reward 

accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

• Value Iteration: First Iteration

28

→ -0.1

↓ -0.1

← -0.1

→ -0.1

← -0.1

→ 0.9

↓ -0.1

+1

↑ -0.1

↓ -0.1

↑ -0.1

→ -1.1

↓ -0.1

-1

↑ -0.1

→ -0.1

← -0.1

→ -0.1

↑ -0.1

← -0.1

→ -0.1

↑ -1.1

← -0.1

Reward -0.1 for each step



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)
• Maximum expected reward 

accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

• Value Iteration: Second Iteration

29

→ -0.2

↓ -0.2

← -0.2

→ 0.8

← -0.2

→ 0.9

↓ -0.2

+1

↑ -0.2

↓ -0.2

↑ 0.8

→ -1.1

↓ -0.2

-1

↑ -0.2

→ -0.2

← -0.2

→ -0.2

↑ -0.2

← -0.2

→ -0.2

↑ -1.1

← -0.2

Reward -0.1 for each step



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)
• Maximum expected reward 

accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

• Value Iteration: Third Iteration

30

→ 0.7

↓ -0.3

← -0.3

→ 0.8

← 0.7

→ 0.9

↓ 0.7

+1

↑ -0.3

↓ -0.3

↑ 0.8

→ -1.1

↓ -0.3

-1

↑ -0.3

→ -0.3

← -0.3

→ -0.3

↑ 0.7

← -0.3

→ -0.3

↑ -1.1

← -0.3

Reward -0.1 for each step



Robot in a room: State-Action Value Function

31

→ 0.7

↓ 0.5

← 0.6

→ 0.8

← 0.7

→ 0.9

↓ 0.7

+1

↑ 0.6

↓ 0.4

↑ 0.8

→ -1.1

↓ 0.6

-1

↑ 0.5

→ 0.5

← 0.4

→ 0.6

↑ 0.7

← 0.5

→ 0.5

↑ -1.1

← 0.6

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)

• Maximum expected reward 
accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Bellman equation (Optimal):
𝑄 𝑠, 𝑎 = 𝔼 𝑅𝑎 𝑠, 𝑠′ + 𝛾max

𝑎′
𝑄 𝑠′, 𝑎′

𝛾 = 1 , 𝑠 = 𝑠𝑡, 𝑠
′ = 𝑠𝑡+1, 𝑎

′ = 𝑎𝑡+1

Reward -0.1 for each step



Robot in a room: State-Action Value Function

• State-Action Value Function: 
• 𝑄(𝑠, 𝑎)

• Maximum expected reward 
accumulated when starting 
from a given state and 
choosing a given action.

• 𝑉 𝑠 = max
𝑎

𝑄 𝑠, 𝑎

• Policy: 
• 𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

32

→ 0.7

↓ 0.5

← 0.6

→ 0.8

← 0.7

→ 0.9

↓ 0.7

+1

↑ 0.6

↓ 0.4

↑ 0.8

→ -1.1

↓ 0.6

-1

↑ 0.5

→ 0.5

← 0.4

→ 0.6

↑ 0.7

← 0.5

→ 0.5

↑ -1.1

← 0.6

Reward -0.1 for each step



Policy Gradient Method

• Policy Gradient:
• learn policy directly 𝜋 𝑎|𝑠

Example from: https://www.youtube.com/watch?v=tqrcjHuNdmQ



Policy Gradient Method

• Policy Gradient:
• learn policy directly 𝜋 𝑎|𝑠

• REINFORCE Algorithm



References

• “What is reinforcement learning?,” What Is Reinforcement Learning? - MATLAB & Simulink,
https://www.mathworks.com/discovery/reinforcement-learning.html (accessed Jul. 10, 2023).

• S. Brown, “Machine Learning, explained,” MIT Sloan, https://mitsloan.mit.edu/ideas-made-to-
matter/machine-learning-explained (accessed Jul. 10, 2023).

• “Cluster analysis,” Wikipedia, https://en.wikipedia.org/wiki/Cluster_analysis (accessed Jul. 10,
2023).

• “Regression vs classification in Machine Learning - Javatpoint,” www.javatpoint.com,
https://www.javatpoint.com/regression-vs-classification-in-machine-learning (accessed Jul. 10,
2023).

• “Reinforcement learning,” Wikipedia, https://en.wikipedia.org/wiki/Reinforcement_learning
(accessed Jul. 10, 2023).

• G. Hulten, “CSEP546: Machine learning,” University of Washington,
https://courses.cs.washington.edu/courses/csep546/18au/ (accessed Jul. 10, 2023).

35

https://www.mathworks.com/discovery/reinforcement-learning.html
https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained
https://en.wikipedia.org/wiki/Cluster_analysis
https://www.javatpoint.com/regression-vs-classification-in-machine-learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://courses.cs.washington.edu/courses/csep546/18au/


References

• K. Fragkiadaki and T. Mitchell, “CMU 10703: Deep RL and Control,” Carnegie Mellon University,
https://www.andrew.cmu.edu/course/10-703/ (accessed Jul. 10, 2023).

• “Markov decision process,” Wikipedia, https://en.wikipedia.org/wiki/Markov_decision_process
(accessed Jul. 10, 2023).

• P. Bodik, “Practical machine learning lecture: Reinforcement learning,” University of California,
Berkeley, http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/reinforcement/
(accessed Jul. 10, 2023).

• A. Karpathy et al., “Deep RL Bootcamp,” Deep RL Bootcamp - Berkeley CA,
https://sites.google.com/view/deep-rl-bootcamp/lectures (accessed Jul. 10, 2023).

• R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cambridge, Massachusetts ;
London, England: The MIT Press, 2020.

36

https://www.andrew.cmu.edu/course/10-703/
https://en.wikipedia.org/wiki/Markov_decision_process
http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/reinforcement/
https://sites.google.com/view/deep-rl-bootcamp/lectures


37

Thankyou 



38

Appendices



A1. Optimal State-Value Function

• Value function for arbitrary 𝜋

• Optimal value function

39

• Return



A2. Optimal (State, Action)-Value Function

• Q function for arbitrary 𝜋

• Optimal Q function

• Return

40



A3. Value iteration

41


