Introduction to Reinforcement Learning (RL)

Vikky Masih,

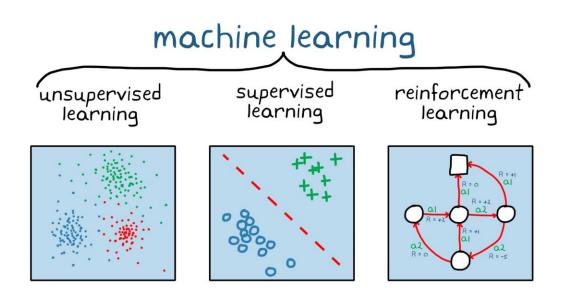
Research Scholar,

Mehta Family School of Data Science & Artificial Intelligence,

IIT Guwahati

11-12 July 2023, DS&AI Research Scholars' Discussion Group, IITG

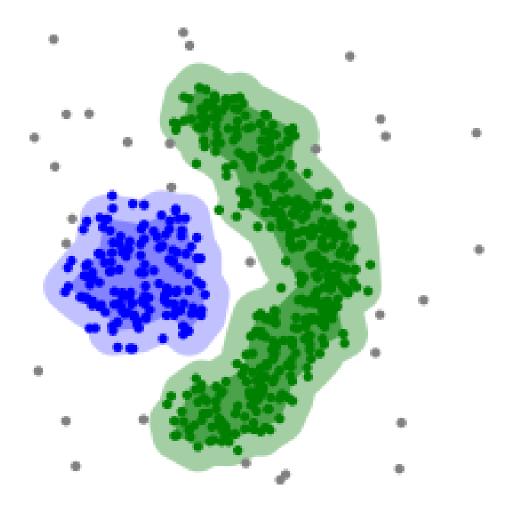
- ML is fundamental concept of AI
 - Learn to improve performance via experience



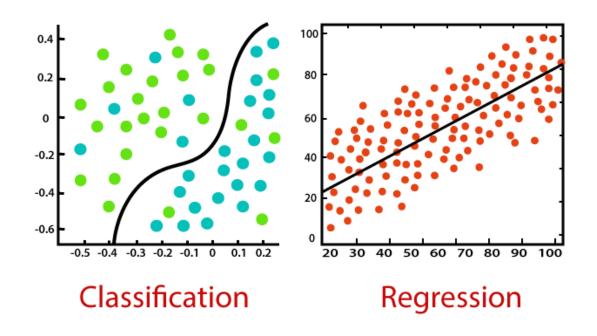
- Unsupervised Learning:
 - Clustering, Anomaly Detection, PCA, etc.
 - Find patterns in input data
- Supervised Learning:
 - Classification and Regression
 - Labelled data for training
- Reinforcement Learning:
 - Decision making under uncertainty
 - Learn to improve performance via interacting with environment

	there are natural isions in the data I	0	clustering anomaly detection
	ferent situations. what actions to	Yes0	SUPERVISED LEARNING MAY BE APPROPRIATE
take in differ	ent situations.	Could there be patterns No No humans haven't recognized before?	neural nets support vector machines regression recommender systems
Do you want the ML sy	rstem to be active or passiv	Ye? Yes — O take based on the data you have about the situation? Yes — O Yes —	MACHINE LEARNING IS NOT USEFUL
The system's own actions will affect the situations it sees in the future.	The system will learn from data I give it.	Do you have access to 	
	Sloan Design: Laura Wer	Will the system be able to gather a lot of data by trying sequences of actions in many different situations and seeing the results?	REINFORCEMENT LEARNING MAY BE APPROPRIATE

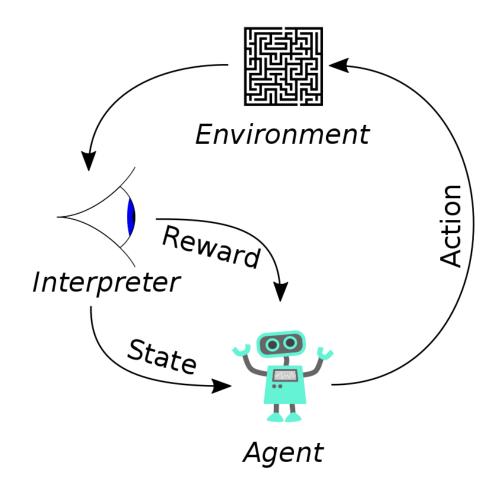
Ref: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained



- Unsupervised Learning:
 - Clustering, Anomaly Detection, PCA, etc.
 - Find patterns in input data
- Unsupervised learning example:
 - Goal: Clustering, Outlier detection
 - Data: $[\overrightarrow{x_i}, \dots, \overrightarrow{x_n}]$



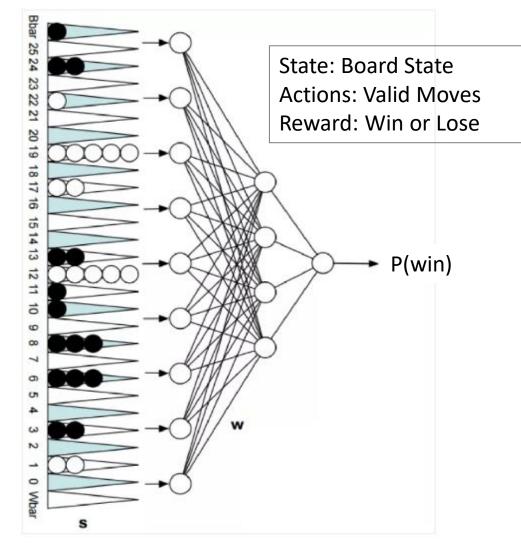
- Supervised Learning:
 - Classification and Regression
 - Labelled data for training
- Regression:
 - Goal: $f(\vec{x}) = \vec{y}$,
 - Data: $[(\overrightarrow{x_i}, \overrightarrow{y_i}), ..., (\overrightarrow{x_n}, \overrightarrow{y_n})]$
- Classification:
 - Goal: $\operatorname{argmax} P(class | \vec{x}) = C$
 - Data: $[(\overrightarrow{x_i}, C_i), \dots, (\overrightarrow{x_n}, C_n)]$



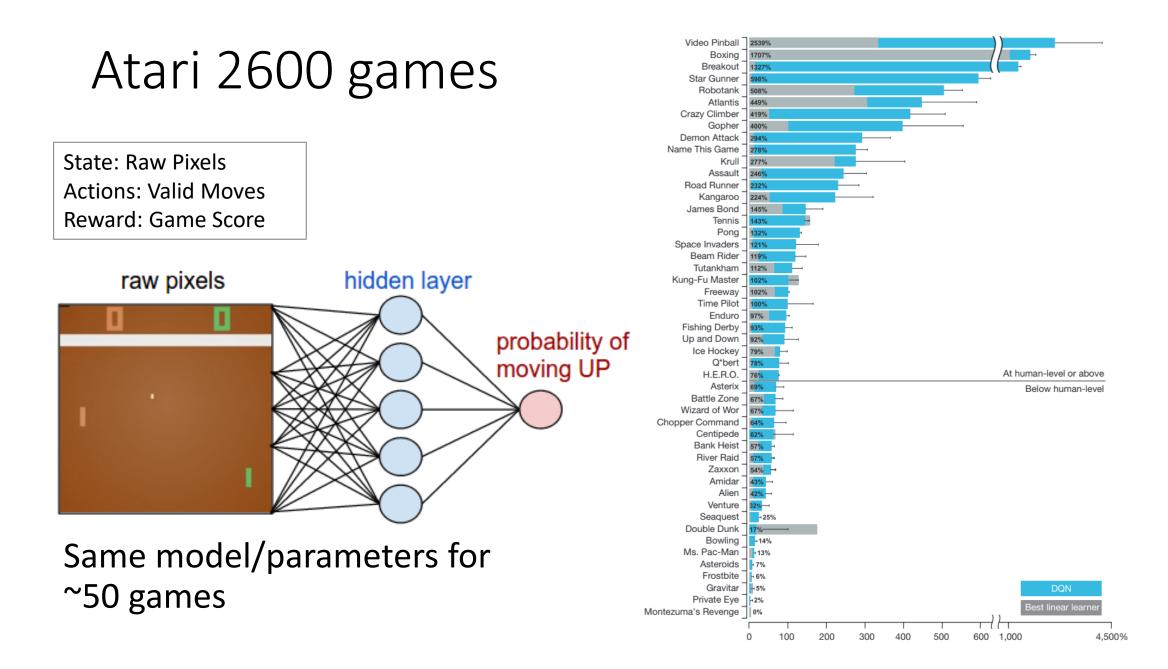
- Reinforcement Learning:
 - Stochastic optimal control
 - Learn to improve performance via interacting with the environment
- RL example:
 - Goal:
 - Maximize cumulative reward Maximize $\sum_{i=1}^{\infty} Reward(State_i, Act_i)$
 - Data:

 $Reward_{i+1}$, $State_{i+1} = Interact(State_i, Action_i)$

TD-Gammon – Tesauro ~1995



- Net with 80 hidden units, initialize to random weights
- Select move based on network estimate & shallow search
- Learn by playing against itself
- 1.5 million games of training
 - competitive with world class players



Slide Credits: Geoff Hulten

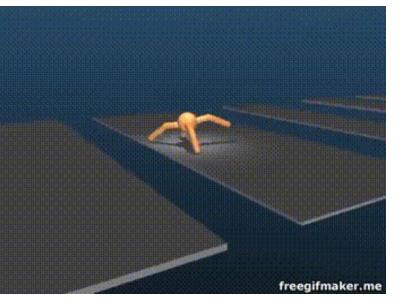
Robotics and Locomotion

State:

Joint States/Velocities Accelerometer/Gyroscope Terrain Actions: Apply Torque to Joints Reward: Velocity – { stuff }



Figure 5: Time-lapse images of a representative *Quadruped* policy traversing gaps (left); and navigating obstacles (right)

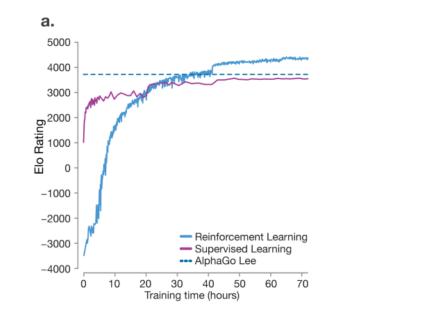


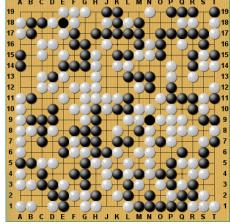
Slide Credits: Geoff Hulten

2017 paper https://arxiv.org/pdf/1707.02286.pdf

Alpha Go

- Learning how to beat humans at 'hard' games (search space too big)
- Far surpasses (Human) Supervised learning
- Algorithm learned to outplay humans at chess in 24 hours

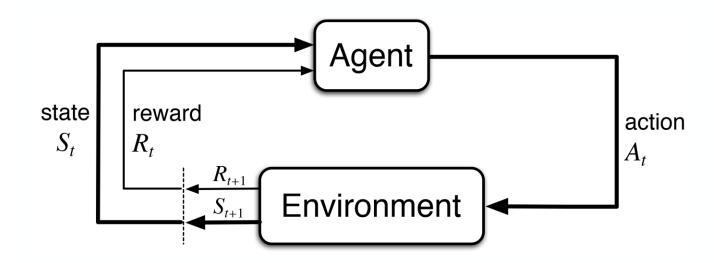




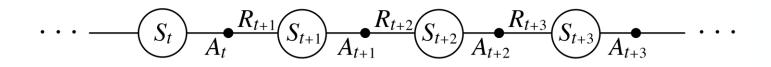
Elo Rating

State: Board State Actions: Valid Moves Reward: Win or Lose

Slide Credits: Geoff Hulten https://deepmind.com/documents/119/agz_unformatted_nature.pdf



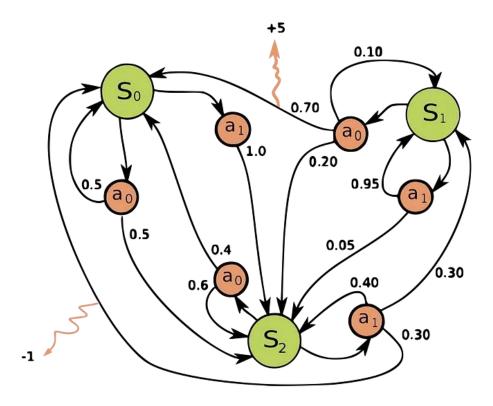
Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...Agent observes state at step t: $S_t \in S$ produces action at step t: $A_t \in \mathcal{A}(S_t)$ gets resulting reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ and resulting next state: $S_{t+1} \in S^+$



Reinforcement Learning

- RL problems are generally posed as Markov Decision Process (MDP)
 - RL is used for MDPs where the transition prob. or reward prob. are unknown.
- MDP: Discrete-Time Stochastic Control Process
 - Markovian Property:
 - Next reward and state does not depend on history.
 - Next reward and state depend only on current state and action.
 - It's a 4-tuple $(S, A_s, P_a(s, s'), R_a(s, s'))$
 - $S \rightarrow$ State Space \rightarrow Set of states
 - $A_s \rightarrow$ Action Space available at state $s \rightarrow$ Set of possible actions
 - $P_a(s,s') = \mathbb{P}(s'|s,a) \rightarrow$ Probability of transitioning from s to s' after taking action a
 - $R_a(s,s') = \mathbb{E}(r'|s,a) \rightarrow$ Expected Reward obtained after transitioning from s to s' after taking action a

Example MDP



- 3 states (green circles)
 - $\{S_0, S_1, S_2\}$
- 2 actions (orange circles)
 - $\{a_0, a_1\}$
- 2 rewards (orange arrows)
 - $R_{a1}(S_2, S_0) = -1$
 - $R_{a0}(S_1, S_0) = +5$
- Example transition probabilities:
 - $P_{a0}(S_0, S_2) = 0.5$
 - $P_{a0}(S_0, S_0) = 0.5$

Reinforcement Learning

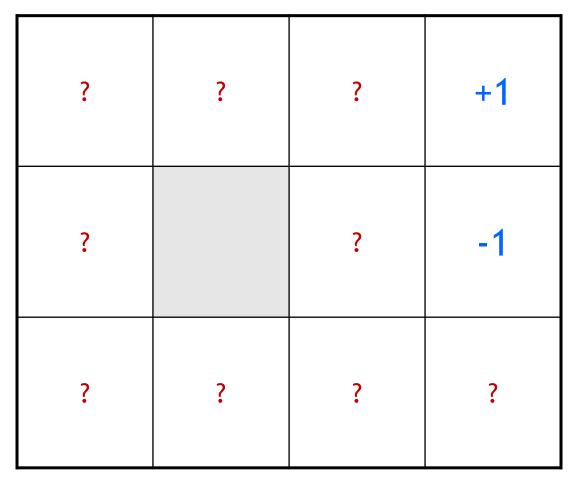
- Policy (π) : Mapping from state to action
 - Deterministic: $a_t = \pi(s_t)$, or,
 - Stochastic: $a_t = argmax_a \pi(a|s_t)$
- Objective of RL:
 - Find a policy that maximizes long term cumulative reward.
 - maximize $\sum_{t=0}^{T} \gamma^t R_{a_t}(s_t, s_{t+1})$, where, $\gamma \in [0,1]$ (Discount factor)
- How to make a decision?
 - Rank State or (State, Action) based on some value derived from experience
 - Value functions measure the goodness of a particular state or state/action pair for a given Policy

Robot in a room

F	Robot		+1
			-1

• States:

- Location $\in \{(1,1), \dots, (3,4)\}$
- Actions:
 - UP, DOWN, LEFT, RIGHT
- Terminate at (1,4) or (2,4)
- Note:
 - Transitions and rewards are deterministic.
- Reward +1 at (1,4), -1 at (2,4)
- Reward -0.1 for each step



- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

• $\gamma = 1, s = s_t, s' = s_{t+1}$

0	0	0	+1
0		0	-1
0	0	0	0

- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Value Iteration
 - Initializing

•
$$V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V_k(s') \right) \right)$$

-0.1	-0.1	0.9	+1
-0.1		-0.1	-1
-0.1	-0.1	-0.1	-0.1

- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Using Bellman equation iteratively
 - $V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s,s') + \gamma V_k(s') \right) \right)$
 - First Iteration

-0.1	0.8	0.9	+1
-0.1		0.8	-1
-0.1	-0.1	-0.1	-0.1

• State Value Function:

- V(s)
- Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Using Bellman equation iteratively
 - $V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s,s') + \gamma V_k(s') \right) \right)$
 - Second Iteration

0.7	0.8	0.9	+1
-0.1		0.8	-1
-0.1	-0.1	0.7	-0.1

- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Using Bellman equation iteratively
 - $V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s,s') + \gamma V_k(s') \right) \right)$
 - Third Iteration

0.7	0.8	0.9	+1
0.6		0.8	-1
-0.1	0.6	0.7	0.6

• State Value Function:

- V(s)
- Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Using Bellman equation iteratively
 - $V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s,s') + \gamma V_k(s') \right) \right)$
 - Fourth Iteration

0.7	0.8	0.9	+1
0.6		0.8	-1
0.5	0.6	0.7	0.6

- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

- Using Bellman equation iteratively
 - $V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s,s') + \gamma V_k(s') \right) \right)$
 - Fifth Iteration

0.7	0.8	0.9	+1
0.6		0.8	-1
0.5	0.6	0.7	0.6

• State Value Function:

- V(s)
- Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

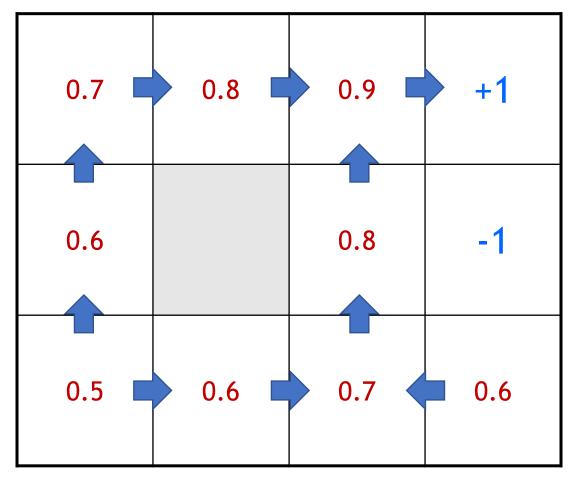
•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

•
$$\gamma = 1, s = s_t, s' = s_{t+1}$$

• Using Bellman equation iteratively

•
$$V_{k+1}(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V_k(s') \right) \right)$$

• Converged



Reward -0.1 for each step

- State Value Function:
 - V(s)
 - Maximum expected reward accumulated when starting from a given state
- Bellman equation (Optimal):

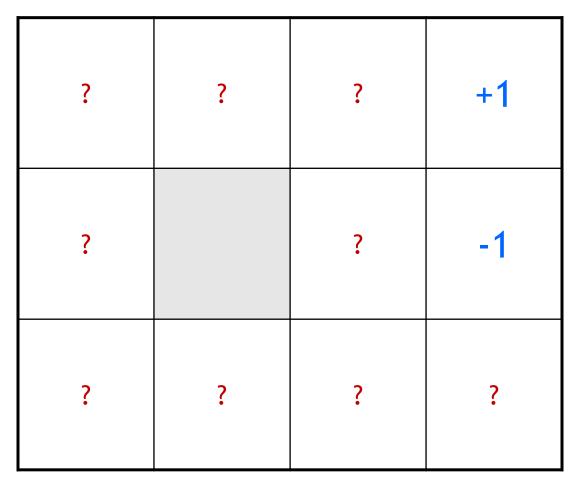
•
$$V(s) = \max_{a} \left(\mathbb{E} \left(R_a(s, s') + \gamma V(s') \right) \right)$$

• $\gamma = 1, s = s_t, s' = s_{t+1}$

• Policy:

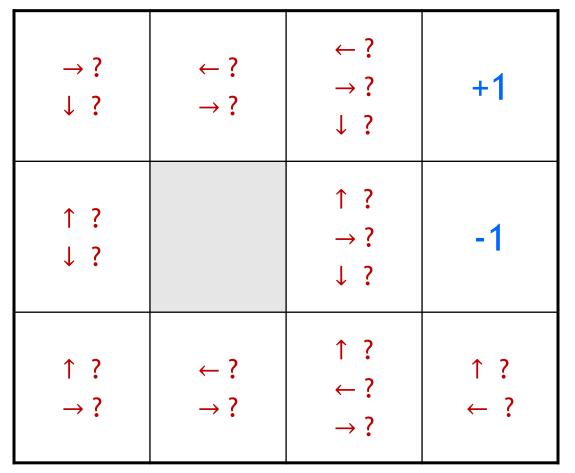
•
$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum P_a(s, s') V(s')$$

Robot in a room:



What if the robot is not functioning properly?

- State transitions are stochastic
 - An action may not lead to intended state
- Rewards/Costs are stochastic



- State-Action Value Function:
 - Q(s,a)
 - Maximum expected reward accumulated when starting from a given state and choosing a given action.

•
$$V(s) = \max_{a} Q(s, a)$$

• Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1 , s = s_t, s' = s_{t+1}, a' = a_{t+1}$

ightarrow 0 ightarrow 0	$\begin{array}{c} \leftarrow 0 \\ \rightarrow 0 \end{array}$	$\begin{array}{c} \leftarrow 0 \\ \rightarrow 0 \\ \downarrow 0 \end{array}$	+1
↑ 0 ↓ 0		$\begin{array}{ccc} \uparrow & 0 \\ \rightarrow & 0 \\ \downarrow & 0 \end{array}$	-1
$ \begin{array}{c} \uparrow & 0 \\ \rightarrow & 0 \end{array} $	← 0 → 0	$\begin{array}{c} \uparrow & 0 \\ \leftarrow & 0 \\ \rightarrow & 0 \end{array}$	↑ 0 ← 0

• State-Action Value Function:

- Q(s,a)
- Maximum expected reward accumulated when starting from a given state and choosing a given action.

• $V(s) = \max_{a} Q(s, a)$

- Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1$, $s = s_t$, $s' = s_{t+1}$, $a' = a_{t+1}$
- Value Iteration: Initialization

→ -0.1 ↓ -0.1	 ← -0.1 → -0.1 	 ← -0.1 → 0.9 ↓ -0.1 	+1
↑ -0.1 ↓ -0.1		 ↑ -0.1 → -1.1 ↓ -0.1 	-1
↑ -0.1 → -0.1	← -0.1 → -0.1	↑ -0.1 ← -0.1 → -0.1	↑ -1.1 ← -0.1

- State-Action Value Function:
 - Q(s,a)
 - Maximum expected reward accumulated when starting from a given state and choosing a given action.

• $V(s) = \max_{a} Q(s, a)$

- Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1$, $s = s_t$, $s' = s_{t+1}$, $a' = a_{t+1}$
- Value Iteration: First Iteration

→ -0.2 ↓ -0.2	 ← -0.2 → 0.8 	 ← -0.2 → 0.9 ↓ -0.2 	+1
↑ -0.2 ↓ -0.2		↑ 0.8 → -1.1 ↓ -0.2	-1
↑ -0.2 → -0.2	← -0.2 → -0.2	 ↑ -0.2 ← -0.2 → -0.2 	↑ -1.1 ← -0.2

• State-Action Value Function:

- Q(s,a)
- Maximum expected reward accumulated when starting from a given state and choosing a given action.

• $V(s) = \max_{a} Q(s, a)$

- Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1$, $s = s_t$, $s' = s_{t+1}$, $a' = a_{t+1}$
- Value Iteration: Second Iteration

→ 0.7 ↓ -0.3	 ← -0.3 → 0.8 	← 0.7 → 0.9 ↓ 0.7	+1
↑ -0.3 ↓ -0.3		↑ 0.8 → -1.1 ↓ -0.3	-1
↑ -0.3 → -0.3	 ← -0.3 → -0.3 	↑ 0.7 ← -0.3 → -0.3	↑ -1.1 ← -0.3

- State-Action Value Function:
 - Q(s,a)
 - Maximum expected reward accumulated when starting from a given state and choosing a given action.

• $V(s) = \max_{a} Q(s, a)$

- Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1$, $s = s_t$, $s' = s_{t+1}$, $a' = a_{t+1}$
- Value Iteration: Third Iteration

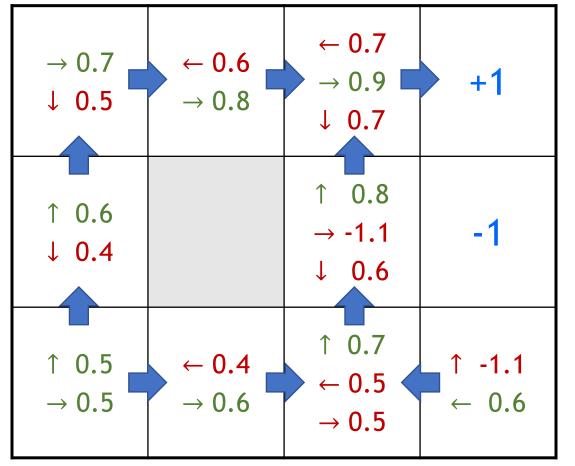
→ 0.7 ↓ 0.5	← 0.6 → 0.8	← 0.7 → 0.9 ↓ 0.7	+1
↑ 0.6 ↓ 0.4		$\begin{array}{ccc} \uparrow & 0.8 \\ \rightarrow -1.1 \\ \downarrow & 0.6 \end{array}$	-1
↑ 0.5 → 0.5	← 0.4 → 0.6	↑ 0.7 ← 0.5 → 0.5	↑ -1.1 ← 0.6

• State-Action Value Function:

- Q(s,a)
- Maximum expected reward accumulated when starting from a given state and choosing a given action.

•
$$V(s) = \max_{a} Q(s, a)$$

• Bellman equation (Optimal): $Q(s,a) = \mathbb{E}\left(R_a(s,s') + \gamma \max_{a'} Q(s',a')\right)$ $\gamma = 1 , s = s_t, s' = s_{t+1}, a' = a_{t+1}$



- State-Action Value Function:
 - Q(s,a)
 - Maximum expected reward accumulated when starting from a given state and choosing a given action.

•
$$V(s) = \max_{a} Q(s, a)$$

- Policy:
 - $\pi(s) = argmax_aQ(s, a)$

Policy Gradient Method

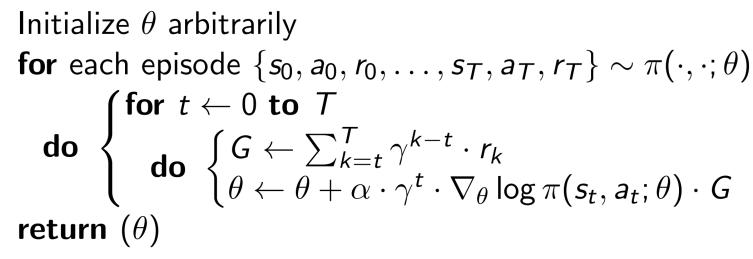
- Policy Gradient:
 - learn policy directly $\pi(a|s)$

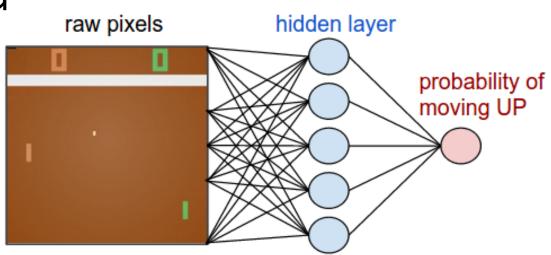


Example from: https://www.youtube.com/watch?v=tqrcjHuNdmQ

Policy Gradient Method

- Policy Gradient:
 - learn policy directly $\pi(a|s)$
- REINFORCE Algorithm





References

- "What is reinforcement learning?," What Is Reinforcement Learning? MATLAB & Simulink, <u>https://www.mathworks.com/discovery/reinforcement-learning.html</u> (accessed Jul. 10, 2023).
- S. Brown, "Machine Learning, explained," MIT Sloan, <u>https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained</u> (accessed Jul. 10, 2023).
- "Cluster analysis," Wikipedia, <u>https://en.wikipedia.org/wiki/Cluster analysis</u> (accessed Jul. 10, 2023).
- "Regression vs classification in Machine Learning Javatpoint," www.javatpoint.com, <u>https://www.javatpoint.com/regression-vs-classification-in-machine-learning</u> (accessed Jul. 10, 2023).
- "Reinforcement learning," Wikipedia, <u>https://en.wikipedia.org/wiki/Reinforcement learning</u> (accessed Jul. 10, 2023).
- G. Hulten, "CSEP546: Machine learning," University of Washington, <u>https://courses.cs.washington.edu/courses/csep546/18au/</u> (accessed Jul. 10, 2023).

References

- K. Fragkiadaki and T. Mitchell, "CMU 10703: Deep RL and Control," Carnegie Mellon University, <u>https://www.andrew.cmu.edu/course/10-703/</u> (accessed Jul. 10, 2023).
- "Markov decision process," Wikipedia, <u>https://en.wikipedia.org/wiki/Markov decision process</u> (accessed Jul. 10, 2023).
- P. Bodik, "Practical machine learning lecture: Reinforcement learning," University of California, Berkeley, <u>http://people.eecs.berkeley.edu/~jordan/courses/294-fall09/lectures/reinforcement/</u> (accessed Jul. 10, 2023).
- A. Karpathy et al., "Deep RL Bootcamp," Deep RL Bootcamp Berkeley CA, <u>https://sites.google.com/view/deep-rl-bootcamp/lectures</u> (accessed Jul. 10, 2023).
- R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cambridge, Massachusetts ; London, England: The MIT Press, 2020.

Thankyou

Appendices

A1. Optimal State-Value Function

- Value function for arbitrary π $v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t | S_t = s]$ $= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$
 - $= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$
- Optimal value function

$$v_*(s) \doteq \max_{\pi} v_{\pi}(s)$$

=
$$\max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1})|S_t = s, A_t = a]$$

=
$$\max_{a} \sum_{s',r} p(s', r|s, a) \left[r + \gamma v_*(s')\right]$$

Return

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$
$$= R_{t+1} + \gamma G_{t+1}$$

A2. Optimal (State, Action)-Value Function

• Q function for arbitrary π

• Return

 $q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s, A_{t} = a] \qquad G_{t} \doteq R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \dots$ $= \sum_{s',r} p(s',r|s,a) \left[r + \gamma \sum_{a'} \pi(a'|s')q_{\pi}(a',s')\right] \qquad = \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1}$ $= R_{t+1} + \gamma G_{t+1}$

Optimal Q function

$$q_*(s,a) \doteq \max_{\pi} q_{\pi}(s,a) \\ = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1},a') | S_t = s, A_t = a \\ = \sum_{s',r} p(s',r|s,a) \Big[r + \gamma \max_{a'} q_*(s',a') \Big]$$

A3. Value iteration

Params: θ - a small positive threshold determining the accuracy of the estimation Initialize V(s), for all $s \in S^+$ arbitrarily, except V(terminal) $\Delta \leftarrow 0$ while $\Delta > \theta$ do foreach $s \in S$ do $\begin{vmatrix} v \leftarrow V(s) \\ V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right] \\ \Delta \leftarrow \max(\Delta, |v - V(s)|) \end{vmatrix}$

end

output: Deterministic policy $\pi \approx \pi_*$ such that $\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]$

41